1. A. Podgoršek, J, Jacquemin*, A.A.H. Pádua, M.F. Costa Gomes*,
    Mixing Enthalpy for Binary Mixtures Containing Ionic Liquids,
    Chem. Rev. 116 (2016) 6075-6106, DOI: 10.1021/acs.chemrev.5b00379
  2. C. Červinka*, A.A.H. Pádua, M. Fulem,Thermodynamic properties of selected homologous series of ionic liquids calculated using molecular dynamics,J. Chem. Phys. 120 (2016) 2362-2371, DOI: 10.1021/acs.jpcb.5b11070
  3. A. Dequidt*, J. Devémy, A.A.H. Pádua, Thermalised Drude oscillators with the LAMMPS simulation software, J. Chem. Info. Model. 56 (2016) 260-268, DOI: 10.1021/acs.jcim.5b00612
  4. K. Shimizu*, M. Tariq, A.A. Freitas, A.A.H. Pádua, J.N. Canongia Lopes*,
    Self-Organisation in ionic liquids: From bulk to interfaces and films,
    J. Braz. Chem. Soc. 27 (2016) 349-362, DOI: 10.5935/0103-5053.20150274
  5. L. Moura, C.C. Santini, M.F. Costa Gomes*. Gaseous hydrocarbon separations using functionalized ionic liquids. Oil & Gas Science and Technology, 71, 23-34 (2016).
  6. J.-M. Andanson, X. Meng, M. Traïkia, P. Husson. Quantification of the impact of water as an impurity on standard physico-chemical properties of ionic liquids. J. Chem. Thermodyn., 2016, 94, 169-176.
  7. X. Meng, K. Ballerat-Busseroles, P. Husson, J.-M. Andanson. Impact of Water on the Melting Temperature of Urea + Choline Chloride Deep Eutectic Solvent. New J. Chem., 2016.


  1. V. Sresht, A.A.H. Pádua*, D. Blankschtein*. Liquid-Phase Exfoliation of Phosphorene: Design Rules from Molecular Dynamics Simulations. ACS Nano 9, (2015) 8255-8268, DOI: 10.1021/acsnano.5b02683.
  2. J.N. Canongia Lopes, M.F. Costa Gomes, A.A.H. Padua, “Molecular Modelling of Ionic Liquids”, Chapter 5, Ionic Liquids Completely UnCLOILed: Critical Expert Overviews, N.V. Plechkova, K.R. Seddon, Eds., Wiley, 2015.
  3. T.A. Fadeeva, P. Husson, J.A. DeVine, M.F. Costa Gomes, S.G. Greenbaum, E.W. Castner Jr.*. Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids. J. Chem. Phys. 143, 064503 (2015), DOI: 10.1063/1.4928065.
  4. L. Moura, W. Darwich, C.C. Santini, M.F. Costa Gomes*. Imidazolium-based ionic liquids with cyano groups for the selective absorption of ethane and ethylene. Chem. Eng. J. 280, 755-762 (2015), DOI: 10.1016/j.cej.2015.06.034.
  5. L. Pison, V. Bernales, P. Fuentealba, A.A.H. Padua, M.F. Costa Gomes*. Isobutane as a probe of the structure of 1-alkyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide ionic liquids. J. Chem Thermodyn. 89, 98-103 (2015), DOI: 10.1016/j.jct.2015.04.026.
  6. B. B. Kirchner*, O. Hollóczki, J.N. Canongia Lopes, A.A.H. Pádua. Multiresolution calculation of ionic liquids. WIREs Comput. Mol. Sci. 5 (2015) 202-214, DOI: 10.1002/wcms.1212.
  7. J.-M. Andanson, A.A.H. Padua, M.F. Costa Gomes*. Thermodynamics of Cellulose Dissolution in one Imidazolium Acetate Ionic Liquid. Chem. Comm. 51, 4485-4487 (2015), DOI: 10.1039/C4CC10249E.
  8. J. Maszkowska, E. Synak, A. Fabiańska, M. Caban, S. Stolte, P. Husson, M.F. Costa Gomes, R. Synak, P. Stepnowski*. Preliminary study on applicability of ionic liquids as potential passive sampling media of polyaromatic hydrocarbons PAHs analyses in water. Anal. Bioanal. Chem. 407, 3531-3536 (2015), DOI: 10.1007/s00216-015-8545-1
  9. H. Srour, M.F. Costa Gomes, B. Fenet, M. Traikia, P. Husson*, C.C. Santini. Effect of nitrile-functionalization of imidazolium-based ionic liquids on their transport properties pure and mixed with lithium salts. J. Sol. Chem. 44, 495-510 (2015), DOI: 10. 1007/ s10953-014-0280-2
  10. Y. Deng, I. Beadham, M. Ghavre, M.F. Costa Gomes, N. Gathergood, P. Husson, B. Légeret, B. Quilty, M. Sancelme, P. Besse-Hoggan*. When can ionic liquids be considered readily biodegradable? Biodegradation pathways of pyridinium, pyrrolidinium and ammonium-based ionic liquids. Green Chem. 17, 1479-1491 (2015), DOI: 10.1039/C4GC01904K
  11. J.N. Canongia Lopes, M.F. Costa Gomes, A.A.H. Padua, “Molecular Modelling of Ionic Liquids”, Chapter 5, Ionic Liquids Completely UnCLOILed: Critical Expert Overviews, N.V. Plechkova, K.R. Seddon, Eds., Wiley, 2015.


  1. S. Velioglu, X. Yao, J. Devemy, G. Ahunbay, A. Dequidt, S.B. Tantekin-Ersolmaz, M.F. Costa Gomes, A.A.H. Padua*. Solvation of a Cellulose Microfibril in Imidazolium Acetate Ionic Liquids: Effect of a Co-Solvent. J. Phys. Chem. B118, 14860-14869 (2014), DOI: 10.1021/jp508113a.
  2. M. Ribeiro*, A. Padua, M.F. Costa Gomes. Glass transition of ionic liquids under high pressure. J. Chem. Phys.140, 244514 (2014), DOI: 10.1063/1.4885361.
  3. M. Curras, P. Husson*, A. Padua, M.F. Costa Gomes, J. García*. High-pressure densities of 2,2,2-trifluoroethanol + ionic liquid mixtures useful for possible applications in absorption cycles. Ind. Eng. Chem. Res. 56, 10791-10802 (2014), DOI: 10.1021/ie5008568
  4. A. Andresova, J. Storch, M. Traïkia, Z. Wagner, M. Bendova*, P. Husson*. Branched and cyclic alkyl groups in imidazolium-based ionic liquids: molecular organization and physico-chemical properties. Fluid Phase Equilibr. 371, 41-49 (2014), DOI: 10.1016/j.fluid.2014.03.004
  5. L. Moura, C.C. Santini, M.F. Costa Gomes*. Gas separations using ionic liquids. in Chemical Processes for a Sustainable Future. T. M. Letcher, J. L. Scott and D. Patterson eds, chapter 22, Royal Society of Chemistry, Cambridge, UK, 2014. ISBN: 978-1-849739757
  6. J.-M. Andanson, M. Traïkia, P. Husson*. Ionic association and interactions in aqueous methylsulfate alkyl-imidazolium-based ionic liquids. J. Chem. Thermodyn. 77, 214-221 (2014), DOI: 10.1021/je400841s
  7. B.E. Mbondo Tsamba, S. Sarraute, M. Traïkia, P. Husson*. Transport properties and ionic association in pure imidazolium-based ionic liquids as a function of temperature. J. Chem. Eng. Data 59, 1747-1754 (2014), DOI: 10.1021/je400841s
  8. A.A.H. Pádua, D. Tomida, C. Yokohama, E.H. Abramson, R.F. Berg, E.F. May, M.R. Moldover, A. Laesecke. Viscometers, Ch. 4 in Experimental Thermodynamics Volume IX: Advances in Transport Properties of Fluids, M.J. Assael, A.R.H. Goodwin, V. Vesovic, W.A. Wakeham, eds., Royal Society of Chemistry (2014) 96-131.
  9. J.M. França, F.R. Pimentel, S.C. Vieira, M.J. Lourenço, F.J.V. Santos, C.A. Nieto de Castro*, A.A.H. Pádua. Thermophysical Properties of Ionic Liquid Dicyanamide (DCA) Nanosystems. J. Chem. Thermodyn. 79, 248-257 (2014).
  10. M.R. Simond, K. Ballerat-Busserolles, J.Y. Coxam, A.A.H. Pádua*. Interactions of Alkanolamines with Water: Excess Enthalpies and Hydrogen Bonding. J. Chem. Theory Comput. 2471-2478 (2014).
  11. M. Ribeiro*, A.A.H. Padua, M.F. Costa Gomes. Equations of state for an ionic liquid under high pressure: A molecular dynamics simulation study. J. Chem. Thermodyn. 74, 39-42 (2014).
  12. A.A.H. Pádua. Molecular Thermodynamics: Understanding the Interactions and Properties of Ionic Liquids. Actualité Chimique 382-383, 63–70 (2014).
  13. A.S. Pensado*, F. Malberg, M. F. Costa Gomes, A.A.H. Pádua*, J. Fernández, B. Kirchner. Interactions and structure of ionic liquids on graphene and carbon nanotubes surfaces. RSC Adv 4, 18017-18024 (2014).
  14. X. Paredes, J. Fernández; A.A.H. Pádua, P. Malfreyt*, F. Malberg, B. Kirchner, A.S. Pensado*. Bulk and Liquid–Vapor Interface of Pyrrolidinium-Based Ionic Liquids: a Molecular Simulation Study. J. Phys. Chem. B 118 731–742 (2014).
  15. J.-M. Andanson, E. Bordes, J. Devémy, F. Leroux, A.A.H. Pádua, M.F. Costa Gomes*. Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids. Green. Chem. 16, 2528-2538 (2014).


  1. A. Kauling, G. Ebeling, J. Morais, A.A.H. Pádua, T. Grehl, H.H. Brongersma, J. Dupont*. The surface composition/organization of ionic liquids with Au nanoparticles revealed by high sensitivity Low Energy Ion Scattering. Langmuir 29, 14301–14306 (2013).
  2. F. Liu, M. Audemar, D. Cartigny, J.-M. Clacens, K. De Oliveira Vigier, M.F. Costa Gomes, A.A.H. Pádua, F. Decampo, F. Jérôme*. Selectivity enhancement in the aqueous acid-catalyzed conversion of glucose to 5-hydroxymethylfurfural induced by choline chloride. Green Chem. 15, 3205-3213 (2013).
  3. A.C.F. Mendonça, Y.D. Fomin, P. Malfreyt, A.A.H. Pádua*. Novel ionic lubricants for amorphous carbon surfaces: molecular modeling of the structure and friction. Soft Matter 9, 10606-10616 (2013).
  4. L. Pison, M. F. Costa Gomes, A. A. H. Pádua, D. Andrault, S. Norman, C. Hardacre, M. C. C. Ribeiro*. Pressure effect on vibrational frequency and dephasing of 1-alkyl-3-methylimidazolium hexafluorophosphate ionic liquids. J. Chem. Phys. 139, 054510 (2013).
  5. L. Moura, M. Mishra, V. Bernales, P. Fuentealba, A.A.H. Padua, C.C. Santini, M.F. Costa Gomes*. Effect of unsaturation on the absorption of ethane and ethylene in imidazolium-based ionic liquids. J. Phys. Chem. B 117, 7416-7425 (2013).
  6. S. Stevanovic, A. Podgorsek, L. Moura, C.C. Santini, A. A. H. Padua, M.F. Costa Gomes*. Absorption of carbon dioxide by ionic liquids with carboxylate anions. Int. J. Greenhouse Gas Control 17, 78-88 (2013).
  7. A. Podgorsek, A.S. Pensado, C.C. Santini, M.F. Costa Gomes, A.A.H. Padua*. Assessment of the interaction energies of ionic liquids with metallic nanoparticles : solvation and stabilization effects. J. Phys. Chem. C 117, 3537-3547 (2013).
  8. A.C.F. Mendonça, A.A.H. Pádua, P. Malfreyt*. Non-equilibrium molecular simulations of new ionic lubricants at metallic surfaces: prediction of the friction. J. Chem. Theory Comput. 9, 1600–1610 (2013).
  9. S. Stevanovic, M .F. Costa Gomes*. Solubility of carbon dioxide, nitrous oxide, ethane and nitrogen in 1-butyl-1-methylpyrrolidinium and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate (eFAP) ionic liquids. J. Chem. Thermodyn. 59, 65-71 (2013).
  10. M. Polaskova, R.Cermak*, V. Verney, P. Ponizil, S.Commereuc, Margarida F . Costa Gomes, A.A.H. Padua, P. Mokrejs, M. Machovsky. Preparation of microfibers from wood/ionic liquid solutions. Carbohydrate Polymers 92, 214-217 (2013).


  1. G. Salas, P. Campbell, C. Santini*, K. Philippot, A.A.H Padua, M.F. Costa Gomes, A.A.H Padua. Ligand effect on the catalytic activity of ruthenium nanoparticles in ionic liquids. Dalton Trans. 41(5), 13919-13926 (2012).
  2. X. Paredes, J. Fernandez, A.A.H. Pádua, P. Malfreyt*, F. Malberg, B. Kirchner, A. Pensado*. Using molecular simulation to understand the structure of [C2C1im]+ – alkylsulfate ionic liquids: bulk and liquid-vapor interfaces.
    J. Phys. Chem. B
    116, 14159–14170 (2012).
  3. M. Simond, K. Ballerat-Busserolles, J.Y. Coxam, A.A.H. Pádua*. Molecular simulation of alkanolamines using an extendable force field. ChemPhysChem 13, 3866–3874 (2012).
  4. A.C.F. Mendonça, P. Malfreyt, A.A.H. Pádua*. Interactions and ordering of ionic liquids at a metal surface. J. Chem. Theory Comput. 8, 3348–3355 (2012).
  5. D. Almantariotis, O. Fandino, J.Y. Coxam, M.F. Costa Gomes*. Enthalpy of solution and carbon dioxide solubility in 1-hexyl-3-methylimidazolium bis[trifluoromethylsulfonyl]amide and 1-octyl-3-methylimidazolium bis[trifluoromethylsulfonyl]amide at temperatures between 293 K and 333 K and pressures up to 5 MPa. Int. J. Greenhouse Gas Control 10, 329-340 (2012).
  6. A.C.F. Mendonça, N. Dörr, A.A.H. Pádua*. Predicting thermophysical properties of ionic liquids as a function of temperature and pressure. J. Eng. Tribol. 226, 965–976 (2012).
  7. Y. Deng, P. Besse-Hoggan, A.M. Delort, P. Husson, M. Sancelme, M.F. Costa Gomes*. Relevant parameters for assessing the environnemental impact of pyridinium, ammonium and pyrrolidinium based ionic liquids. Chemosphere 89, 327-333 (2012), DOI:10.1016/j.chemosphere.2012.04.050
  8. J.N. Canongia Lopes, A.A.H. Pádua. CL&P: A generic and systematic force field for ionic liquids modeling. Theor. Chem. Accounts 131, 1129 (2012).
  9. D. Almantariotis, S. Stephanovic, O. Fandino, A.S. Pensado, A.A.H. Padua, J.Y. Coxam, M.F. Costa Gomes*. Adsorption of carbon dioxide, nitrous oxide, ethane and nitrogen by 1-alkyl-3-methylimidazolium (CnmIm, n=2,4,6) tris(pentafluoroethyl)trifluorophosphate ionic liquids (eFAP). J. Phys. Chem. B 116, 7728-7738 (2012).
  10. J. Jacquemin*, M. Bendova, Z. Sedlakova, M. Blesic, J.D. Holbrey, C.L. Mullan, T.G.A. Youngs, L. Pison, Z. Wagner, K. Aim, M.F. Costa Gomes*, C. Hardacre*. Interactions and structure studies of (amines + ionic liquids) binary mixtures. ChemPhysChem. 7, 1825-1835 (2012).
  11. J.Jacquemin, P. Husson*. Comments and additional work on “High-pressure volumetric properties of imidazolium-based ionic liquids – Effect of the anion” [J. Chem. Eng. Data 2007, 52, 2204-2211]”. J. Chem. Eng. Data 57(9), 2409-2414 (2012), DOI: 10.1021/je3003157
  12. A. Podgorsek*, M. Macchiagodena, F. Ramondo, M.F. Costa Gomes, A.A.H. Padua*. Glycine in 1-butyl-3-methylimidazolium acetate and trifluoroacetate ionic liquids : Effect of fluorination and hydrogen bonding. ChemPhysChem. 7, 1753-1763 (2012).
  13. M.F. Costa Gomes*, L. Pison, A.S. Pensado, A.A.H. Padua. Using ethane and butane as probes to the molecular structure of 1-alkyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ionic liquids. Faraday Disc. 154, 41-52 (2012).
  14. K. Shimizu, A.S. Pensado, P. Malfreyt, A.A.H. Pádua, J.N. Canongia Lopes.
    2D or not 2D: Structural and charge ordering at the solid-liquid interface of the 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate ionic liquid. Faraday Discussions 154, 155–169 (2012).
  15. S. Stevanovic, A. Podgorsek, A.A.H. Padua, M.F. Costa Gomes*. Effect of water on the carbon dioxide absoprtion by 1-alkyl-3-methylimidazolium acetate ionic liquids. J. Phys. Chem. B 116, 14416-14425 (2012).