Monte Carlo simulations of the static friction between two grafted polymer brushes

Ana C. F. Mendonça, Florent Goujon, Patrice Malfreyt and Dominic J. Tildesley

A configurational bias Monte Carlo method has been developed to study the static friction between grafted polymers immersed in a good solvent. Simple models using the soft quadratic potential from a dissipative particle dynamics study have been used to model polyzwitterionic brushes at physiological pressures (up to 7.5 MPa). Three models of decreasing rigidity have been used to model the friction between the brushes by calculating the tangential component of the pressure induced by a mismatch in the registry of the two grafting surfaces. The static friction coefficient can be calculated for three model systems and the slip between the layers occurs at a much lower values of shear force for the more flexible polymer layer. A moderate increase in the flexibility of the chains reduces the friction coefficient by a factor of ca. 20. Tilting the layer directors of the brushes also increases the static friction between the layer when the top, tilted layer is displaced in the direction away from the tilt. Non-equilibrium dynamics techniques for the same model were performed using dissipative particle dynamics and the limiting extremes of the Stribeck curve corresponding to the boundary lubrication regime and the hydrodynamic lubrication regime were observed for these flat surfaces. As expected, \(\mu_s \) is significantly lower than \(\mu_k \) for the same system. The dynamical friction coefficients in the model are in good agreement with those observed in the experiment and the ratio of \(\mu_k/\mu_s \) of between 0.11 and 0.5 observed in the simulations is in reasonable agreement with the value of 0.5 normally observed for these systems.

1 Introduction

For a fluid confined between surfaces, the friction coefficient (\(\mu \)) as a function of the relative sliding velocity (\(v_x \)) is shown in the Stribeck curve\(^1\) of Fig. 1.

At high sliding velocity and low normal load, \(F_z \), the system is in the hydrodynamic lubrication regime. For a spherical roller of radius \(R \) on a flat surface, the solution of the Navier–Stokes equation\(^3\) shows a linear dependence on \(v_x \).

\[
\mu = 2\pi R \frac{v_x \eta}{F_z}
\]

where \(\eta \) is the shear viscosity of the entrapped fluid. At lower sliding velocities and higher normal loads, the surfaces are in close contact and the system exhibits boundary layer lubrication (where the limiting value of \(\mu \) is the static friction coefficient). Between these extremes, there is a mixed or intermediate regime.

At zero sliding velocities, the situation is as shown in Fig. 2(a). The layers are aligned along the surface normal and the tangential component of the force is sufficiently small that the polymer layers will distort and may tilt but the surfaces will not move with respect to one another (this is the sticking regime). When the lateral force exceeds a critical value, \(f_c \), the layers slide and the polymers will often tilt in response (this is the sliding regime), see Chapter 9 of Persson.\(^3\)

In two recent papers,\(^4,5\) we have used the dissipative particle dynamics method (DPD) to calculate the friction coefficient between two flat surfaces coated with polymer and immersed in a solvent. DPD\(^6\) is a coarse-grained simulation technique that enables us to use a sufficiently long time-step that approaches the sliding velocities observed in surface forces experiments.

\(^1\) EPFL-CECAM, Batochime (BCH), CH-1015, Lausanne, Switzerland
\(^2\) Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, UMR CNRS 6296, BP 10448, F-63000 Clermont-Ferrand, France.
E-mail: Patrice.Malfreyt@univ-bpclermont.fr

Received 30th November 2015, Accepted 29th January 2016
DOI: 10.1039/c5cp07374j
www.rsc.org/pccp
on similar systems.7 In this work, the friction coefficient is calculated at a fixed sliding velocity from the elements of the pressure tensor

$$\mu = -\frac{\langle P_{xz} \rangle}{\langle P_{zz} \rangle}$$

where $\langle P_{xz} \rangle$ is the tangential component and $\langle P_{zz} \rangle$ is the normal component of the pressure. These simulations are in the hydrodynamic lubrication regime over many orders of magnitude of the sliding velocity (see Fig. 2(a) of Goujon et al.3). The technique models the situation shown in Fig. 2(b) and provides estimates of the kinetic friction coefficient.

Although, in principle, lowering the shearing velocity in these simulations should allow us to reach the boundary layer regime, in practice as we continue to reduce v_s, the signal for P_{xz} becomes statistically indistinguishable from the noise and we cannot calculate a meaningful value for μ for simulations of 3×10^6 timesteps.

In this paper we propose an alternative simulation approach to measuring μ as $v_s = 0$. We will simulate the static friction coefficient in the situation shown in Fig. 2(a), using a Monte Carlo (MC) approach. We will use an adaptation of the iso-stress, iso-strain simulation MC method developed for studying melting between two solid walls composed of Lennard-Jones atoms.8,9 The system consists of two polymer brushes immersed in solvent between two surfaces. The head groups are tethered to a lattice on each surface, the polymer tails are free to move under the intermolecular and intramolecular potentials. The system is prepared by performing MC simulations at constant-μ_{sol}, V, T, where μ_{sol} is the chemical potential of the solvent, followed by constant-P_{xz}, N, T simulations. This insures both mechanical and chemical equilibrium at a constant load. In the starting configuration, the surface tethering points of the upper and lower polymer layers are in registry with one another. Then, it is possible to perform simulations at constant-P_{xz}, N, T and measure the resulting registry between the two layers. In fact, it turns out to be more efficient to fix the mismatch in the registry of the two surfaces and to measure P_{xz}. These simulations are performed at close contact. There is a thin layer of solvent in the interfacial region between the polymer brushes and additional solvent interspersed within the polymer brush, see Fig. 3. The solvent layer is thin enough and sufficiently ordered that it can sustain a shear. As the registry-mismatch is increased by imposing a particular starting configuration, P_{xz} increases, passing through a maximum before the brushes come back into registry. The maximum value of P_{xz} corresponds to the largest value of the lateral pressure that the system could sustain without sliding. The static friction coefficient can be deduced from P_{xz} at this mismatch.

The idea of measuring the degree of registry-mismatch between two lattices to obtain insights on the tribological properties of the materials, has been used in several recent studies.10–13 The registry index, RI, a parameter that varies between 0 and 1, where 1 corresponds to the worst stacking mode and 0 to the optimal stacking configuration, allows the characterisation of the sliding-energy landscape and a calculation of the important frictional properties. Using this approach, Hod and coworkers were able to fully reproduce the experimental friction of a graphene nanoflake sliding over a graphite surface,11 a Graphene/h-BN interface,13 and also for a non-planar system composed of double walled boron nitride nanotubes.12

Coarse-grained molecular dynamics (MD) simulations have been used study slip-stick behaviour on surfaces.14–18 Thompson and Robbins15 studied thin fluid films confined between two solid plates and between crystalline surfaces separated by a molecularly thin layer of linear polymers.17 These simulations are performed on mesoscale models (of a different type than considered in this work) but using sliding velocities that are significantly higher than those that can be attained in the DPD method. In the MC method presented in this work, we are calculating the lateral barrier to movement by measuring the force as a function of layer registry. The dynamical simulations measure the minimum force required.
to pull the layer over this barrier from a static start until the layers move. So far as we are aware these methods have not been used to reproduce the Striebeck curve.

The problem discussed in this paper is more difficult than those previously tackled by registry-mismatch approaches. The orderinduced by the pinning of the polymers, to fixed positions on the solid surface, does not necessarily transmit structure to the boundary layer because of the orientational and conformational disordering of the polymer chains. To tackle this problem, we move in stages by defining a simple, rigid DPD model of two rigid polymer layers bound to the surface, comparing the friction with that of the bare surface. We will then relax the rigidity of the polymer by allowing bond-stretching and bond angle deformation introduced using the configurational-bias Monte Carlo method. This will allow us to estimate the effect of conformational flexibility on the friction. We then estimate the static friction coefficient for the different systems, and compare our results with the kinetic friction.

In this work, we set
$$\text{aij} = 1.0.$$ The wall is modelled as a continuum bare surface. We will then relax the rigidity of the polymer by disordering of the polymer chains. To tackle this problem, we move
$$\text{rij} \text{z} \text{r} \text{k} \text{rij}$$
onbonded interactions between solvent and polymer particles. A DPD model is used in this work, in which the coarse-grained polymer, non-bonded interactions are limited to particles that are separated by more than two bonds. Within a polymer, bonds and angles are modelled using harmonic springs. There are non-bonded interactions between solvent and polymer particles and between the fluid and the wall. Within the same polymer, non-bonded interactions are limited to particles that are separated by more than two bonds.

The total force on a DPD particle i is given by
$$\mathbf{f}_i = \sum_{j \neq i} \left[f_{ij}^c + f_{ij}^R + f_{ij}^D \right]$$
which is the sum of the standard, conservative (C), random (R) and dissipative forces (D). The total conservative force acting between two DPD particles is
$$f_{ij}^c = a_{ij} \left(1 - \frac{r_{ij}}{r_c} \right) \hat{r}_{ij} \quad r_{ij} < r_c$$
where $r_{ij} = |\mathbf{r}_i - \mathbf{r}_j|$, r_c is the cutoff radius and a_{ij} is the maximum repulsion between particles i and j. The corresponding DPD potential is
$$V_{ij}(r_{ij}) = \frac{1}{2} a_{ij} r_c \left(1 - \frac{r_{ij}}{r_c} \right)^2 \quad r_{ij} < r_c$$
where $r_{ij} > r_c$.

In this work, we set $r_c = 1.0$. The wall is modelled as a continuum DPD solid of density ρ_w and the wall–particle force is
$$f_{z,\text{w}} = \pi a_{\text{w}} \rho \left(\frac{1}{12} \frac{z^2}{z_{\text{w}}} + \frac{2}{3} \frac{z^3}{z_{\text{w}}^3} - \frac{4}{5} \frac{z^4}{z_{\text{w}}^4} \right) z_{\text{w}}$$

$z_{\text{w}} = |z_i - z_{\text{w}}|$ with $z_{\text{w}} = \pm L_c/2$ and a_{w} is the repulsion parameter between the solvent or polymer particle and a wall–DPD particle in the continuum solid. The derivation of eqn (6) is given in Appendix A.

The spring force between two connected polymer particles is
$$f_{ij}^s = -k_s (r_{ij} - r_0) \hat{r}_{ij}$$
where r_0 is the equilibrium bond-length and k_s is the spring constant.

The angle θ_{ijk} is the internal angle defined between three polymer particles, i, j, and k. The force on particle i from the bond-angle potential,
$$v(\theta_{ijk}) = \frac{1}{2} k_\theta (\theta_{ijk} - \theta_0)^2,$$ is
$$f_{i,j,k} = k_\theta (\theta_{ijk} - \theta_0) \left[\hat{r}_{ij} - \frac{S_{ijk}}{D} \right]$$
where $S_{ijk} = r_{ij}^2 r_{jk} - r_{ij} r_{ik} r_{jk}^2$, k_θ is the angular spring constant, and θ_0 is the equilibrium value of the bond angle.

Throughout this paper the unit of mass, m, the cut-off distance, r_c and the reduced temperature are set to one. The interaction parameter a_{ij} for solvent-solvent is set to 25. For the solvent-polymer interaction, a_{ij} is set to 20; the slightly lower value encourages the brushes to extend in the presence of a good solvent. a_{ij} for the non-bonded interaction within polymers is set to 75; a larger value of a_{ij} helps to maintain the rigidity of the polymer brushes.

In eqn (6), ρ_{w} is set to 83.0 and ρ_{w} is set to 8.0. The spring constant for the polymer bonds, k_s, is set at 200 and the equilibrium distance, r_0, is set to 0.8. For the bond angles, k_θ is set to 400 and the equilibrium angle, θ_0, is set to π. A lower value of k_θ was also tested, $k_\theta = 200$, to understand the influence of this parameter on the rigidity of the brushes and consequently on the results.

3 Simulations

The initial simulation box is a rectangular parallelepiped with dimensions $L_x = L_y = 9$ and $L_z = 17.5$. The starting configuration was composed of $N_p = 2600$ solvent particles confined between two walls, each composed of one layer of $N_w = 324$ particles rigidly fixed in the configuration of the (100)-plane of the body-centered cubic (bcc) lattice, with a lattice spacing of 0.5. The walls are parallel to the x and y planes, separated by a distance L_z. We note that these wall particles are used to define the anchoring positions of the polymers but that the only wall potential is that given by eqn (6). Polymer brushes were end-grafted to each of the boundary walls to give a total of $N_p = 162$ polymers, each polymer composed of $N_p = 10$ monomers.

This work aims to mimic the surface force balance (SFB) experiments of Chen et al. of bio-compatible polyzwitterionic brushes of poly[2-(methacryloyloxy)ethyl phosphorylcholine] (p MCP), in aqueous media. The experiments show that these
The initial configuration was generated from the rigid model, equilibrated at constant-NVT, for 80 000 cycles. The result, was the starting point for the simulations in the semi-rigid and fully-flexible systems. Each MC cycle consists of one attempted translation of all solvent particles. In the semi-rigid and fully-flexible cases, there is an additional attempt to recreate all the adsorbed polymer chains using the configurational bias technique (CBMC). The CBMC was implemented using the method of Smit.20 In creating a new polymer chain, each successive particle is added from the previous particle (starting at the anchoring point). For each addition to chain, $k = 30$ trial positions were sampled around the previous particle. The length of the bond in each trial k is chosen by sampling from the distribution $r^2 \exp(-\beta \nu(r))$. In the fully-flexible brushes system, the polar angle for the new bond with reference to the previous bond is given by calculating the bond angle energy. First, we generate a random vector on a unit sphere and determine the angle θ. This vector is accepted with a probability $\exp(-\beta \nu(\theta_{\text{new}}))$, and if rejected the procedure is repeated until a value of θ has been accepted. This acceptance-rejection method is shown to give the desired distribution of trial orientations.

Once the probability distribution, ρ_{k}, for the k trial points is calculated from the interaction of each trial particle with the solvent, the wall and for all the other non-bonded interactions within the polymer, one of the trial states is chosen by sampling from ρ_{k}. The entire polymer is built in this way. The new polymer configuration is accepted with a probability given by

$$\min\left(1, \frac{W_{\text{new}}}{W_{\text{old}}}\right)$$

where W_{new} is the Rosenbluth weight of the new trial polymer (the product of the weights for each addition along the chain) and W_{old} is the Rosenbluth weight of the old polymer calculated by a deconstruction of the old chain.

Each system was simulated at constant-μ_{sol}, V, T, by creating and destroying solvent particles at a fixed $\mu_{\text{sol}} = 11.5$, to produce a density of solvent, $\rho_{\text{sol}} \approx 3.0$. The details of the grand canonical simulations can be found in Goujon et al.5,24 The constant $\mu(z)$ profile across the box is checked using the Widom test-particle method.25

The simulations were then continued at constant-$NP_{zz}T$, by allowing the box length to fluctuate along the z-axis according to the applied load (P_{zz}) and scaling the positions of all mobile particles in the solvent and in the polymer. Then, NVT simulations where performed to relax the systems at this new volume, and to produce the starting configuration for the subsequent iso-stress...
where the pressure is calculated in slabs of thickness Δz centred at z and the i-j pair contributes to all slabs between i and j. $\rho(z)$ is the density of the particles along z, $z_g = z_i - z_j$, T is the temperature, I is the unit tensor, $\theta(z) = L_\alpha \times L_\beta$ and $\theta(z)$ is a unit step function. A fraction $\Delta z/|z_g|$ of $\mathbf{f}_g \mathbf{f}_g$ is added to all the slabs between particles i and j. Note that the force on i from j includes terms associated with the wall potential, the bond stretching potentials and bond angle potentials within the polymers. In the case of 3-body-forces such as $\mathbf{f}_g \mathbf{f}_g \mathbf{f}_g$ then the contribution for a given angle θ_{ijk} is $\mathbf{r}_g \mathbf{r}_g \mathbf{f}_g \mathbf{f}_g \mathbf{f}_g$.

Several values of the P_{zz} were used with the aim of obtaining approximately one monolayer of solvent between the upper-wall and the lower-wall brushes. Our objective was to understand the dependence of the frictional component of the pressure tensor, P_{zz}, as a function of the applied load. For the rigid model, we used $P_{zz} = 25, 27$ and 29 in reduced units. In the case of the semi-rigid and flexible models, values of $21, 22, 23, 25$ and 27 where employed. Higher values of P_{zz} were needed in the rigid polymers system in order to obtain the monolayer, then in the cases of the semi-rigid and fully-flexible systems.

The normal pressure calculated from eqn (11) is constant across the slab (see Fig. 9) and is equal to the imposed pressure in the constant-$P_{zz}T$ simulation. In reduced units, pressure is defined as $P^* = P_{zz}/k_B T$, and therefore for a temperature of 298 K, a reduced pressure of 23 corresponds to 9 MPa, a value close to the mean contact pressures observed experimentally.

In this work a quasi-static approach is used to study friction at zero shear-rate. As the top and bottom walls are displaced, the attached film passes through a succession of equilibrium states. The lateral component of the pressure tensor at zero shear-rate. As the top and bottom walls are displaced, the attached film passes through a succession of equilibrium states. The lateral component of the pressure tensor at zero shear-rate. As the top and bottom walls are displaced, the attached film passes through a succession of equilibrium states.

The terms $\omega^R(r_g)$ and $\omega^D(r_g)$ are dimensionless weighting functions. According to Espanol and Warren, a system will sample the canonical ensemble and obey the dissipation-fluctuation theorem if

$$\gamma = \frac{\sigma^2}{2k_B T} \quad \text{and} \quad \omega^D(r_g) = (\omega^R(r_g))^2$$

where k_B is the Boltzmann constant and $\omega^D(r_g)$ is equal to $(1 - r/r_c)^2$.

The shear rate, $\dot{\gamma}_s$, is applied to the system by moving the top and bottom walls in opposite directions along x. Several simulations were performed at different $\dot{\gamma}_s$ and L_B. More specifically, $\dot{\gamma}_s = 2.5 \times 10^{-4}, 5.0 \times 10^{-4}, 1.0 \times 10^{-3}$ for each $P_{zz} = 23, 25$ and 27. In this study, the shear rates are in the range of 10^{-4} to 10^{-3} in reduced units, which correspond to real shear rates of the order of 10^3 s^{-1}, for the time step used in these simulations. We have chosen to use the small as possible values of shear rate, that still allowed accurate estimates of the friction coefficient, to compare with the zero-shear values calculated from the

![Fig. 4](image-url) Sketch of the model system. (a) At $\alpha = 0.0$ the surfaces are in registry and (b) at $\alpha = 0.5$ they are completely out of registry. The solid black lines represent rigid tethered polymers and the solvent particles are shown in orange.
MC method. Additional details of the DPD simulations are given in Goujon et al.4

4 Results and discussion

Three model systems of end-grafted polymer chains immersed in a good solvent and confined between two planar walls (Fig. 3) are simulated using the CBMC method. The fully-flexible system was also studied by DPD simulations at low shear rates. Our aim is to predict the friction in both the boundary-layer lubrication and the hydrodynamic regimes of the Strubeck curve (Fig. 1).

The rigidity of the polymer brushes and the presence of a monolayer of solvent in the gap between the upper-wall and lower-wall grafted polymer brushes, are two important conditions for the calculation of a non-zero frictional force. Fig. 5(a) shows the density profiles of the polymer brushes and the solvent along the z-direction (normal to the interface), for the fully-flexible case. A single layer of solvent is present in the region between the brushes, corresponding to the small peak in the middle of the pore. The density profile \(\rho(z) \) for the beads of the polymer exhibits ten clear peaks in each layer. The density profile of the last four monomers of each polymer (i.e. those closest to the middle of the box) is shown as a function of \(x \) (the direction parallel to the surface) in Fig. 5(b) at \(\alpha = 0.5 \). Even when the surfaces are completely out of registry, and despite the fluctuations in the bond lengths and angles, the polymers are sufficiently rigid to create residual ordering of the tails in the \(x-y \) plane between the brushes and this gives rise to a non-zero value of \(P_{xx} \). Although these average densities create the picture of a highly ordered interface, a top view of the system at \(z = 0.0 \) and \(z = 0.5 \) (Fig. 6(a) and (b), respectively) shows some of the disorder in the fully flexible model. In this instantaneous picture of the system, the dark-brushes are grafted to the upper-wall, the light-blue ones to the lower-wall and the red particles correspond to the anchoring points in the upper wall. The disordering is more pronounced at \(\alpha = 0.5 \) but clearly present in both cases.

The internal structure of the adsorbed polymer can be gauged from the distribution of bond-lengths and angles. The distribution of bonds for the fully-flexible system at three different normal pressures is shown in Fig. 7(a). The average bond-length decreases as \(P_{zz} \) increases. This shift in the peak of the distribution with respect to the underlying Gaussian distribution (dashed line) is due to significant repulsion between the brushes on opposite sides of the pore as the imposed pressure increases and the pore-width decreases by 0.3 as \(P_{zz} \) changes from 23 to 25.

Fig. 7(b) shows the distribution of the bond-angles, for the fully-flexible system using different angular spring constants: \(k_0 = 200 \) and \(k_0 = 400 \). The distribution peaks are close to the underlying normal distribution (dashed lines) with \(\theta_0 = \pi \). The small variation in \(\theta \) along the length of the chain creates much of the disorder shown in Fig. 6. We have taken some care to study the ordering in the fully-flexible model, it is obvious that the rigid and semi-rigid models will be more strongly ordered at the interface between the brushes. In considering the static friction, we will start with the rigid model, where we are likely to see the largest values of \(\langle P_{zz}(z) \rangle \) and hence friction and then relax the constraints on the polymers by considering the other two models. Fig. 8(a) shows \(\langle P_{zz}(z) \rangle \) as a function of \(z \), for the rigid system at \(\langle P_{zz}(z) \rangle = 29 \) (for simplicity, we take \(P_{ab} = \langle P_{ab} \rangle \) from now on and the ensemble averages will be understood). The \(P_{zz}(z) \) profiles are presented in Fig. 8(b), for each different \(z \). We note the \(P_{zz} \) values are constant and non-zero in the middle of the pore and 0 elsewhere. The values in the middle of the pore that are used to construct the curve in Fig. 8(a). We note that the \(P_{zz} = 0 \) away from the interface is the result of the symmetry of the rigid polymer system, which means there is no net field in the
As \(\alpha \) increases from 0.0 to 0.5, \(P_{xz} \) increases from zero to a maximum, also called the static friction point, with coordinates \((z_{yield}, P_{xz}^{yield}) \). As first suggested by Gee et al.,\(^{31}\) when two surfaces are pushed close together and the space between them is occupied by only few layers of solvent, then sliding cannot be initiated until a critical stress (or yield stress, \(P_{xz}^{yield} \)) is exceeded. The walls then slide over one another and eventually come back to the rest point until the critical stress is once again attained, and the walls again slip over one another. This stick-slip cycle suggests that the structure of the system induces the formation of a solid-glassy film when the walls are in registry, and that the film will melt when walls are moved out of registry. Such behaviour has been observed in simulation by Schoen et al.\(^8\) for a simple system composed of two perfectly crystalline walls with a few layers of liquid between them. In this study, we find a similar behaviour in adsorbed polymer systems for each of the three models considered. The rigid model corresponds to the structured static surface studied by Schoen et al.,\(^8\), whereas the fully-flexible model corresponds to inhomogeneous polymer surfaces confining a monolayer of solvent. After the yield point, \(P_{xz} \) decays monotonically to zero at \(\alpha = 0.5 \). Note that although \(\alpha = 0.5 \) corresponds to the surface out of registry, because of the symmetry of the anchoring points the net force on the lower surface from the displaced upper surface is zero. For \(0.5 < \alpha < 1 \), the system will behave in the same way as for \(0.0 < \alpha < 0.5 \), but with \(P_{xz} < 0 \). At \(\alpha = 0.5 \) the film between the brushes is metastable and a small displacement in either direction will be opposed by a tangential force of the opposite sign. The portion of the curve for \(0.5 < \alpha < 1.0 \) has the same shape but the opposite sign to the portion for \(\alpha = 0.0 \) to 0.5. In contrast, the normal pressure tensor \(P_{xz}(z) \) in these systems is constant across the pore, as it must be for mechanical stability.

Turning to the fully-flexible model, Fig. 9(a), shows the normal pressure broken down into its various components at an imposed load of \(P_{zz} = 23 \). The pressure is the sum of the kinetic, conservative, bonds and angles contributions. A strong oscillation is seen in a number of these profiles. However, as expected, the total \(P_{xz}(z) \) profile is flat and its average value corresponds to the imposed \(P_{zz}(z) \), for all \(\alpha \). Fig. 9(b) shows a typical \(P_{xz}(z) \) profile for the fully flexible model, along the \(z \)-direction.

The simulation consisted of 50000 MC cycles stored at intervals of 10 steps. The 5000 stored configurations were used to construct 100 block averages which were used to estimate the standard error in the mean. The maximum in the centre of the box corresponds to the region between the brushes, it is what remains of the flat step Fig. 8(b) for the rigid model. The non-zero value of \(P_{xz} \) away from the interface is the result of the chain disordering through bond stretching, bond-angle and torsional distortions. A maximum value of \(P_{xz} \) corresponding to \(P_{xz}^{yield} \) is obtained for the fully-flexible system for all cases considered.

The behaviour of \(P_{xz} \) as a function of \(\alpha \) for each of the three models is shown in Fig. 10. Each point represents a single CBMC simulation at a given registry and constant applied load. For the fully-flexible system (Fig. 10(b)), two curves corresponding to \(k_0 = 200 \) and \(k_0 = 400 \) are shown. The results for

Fig. 7 (a) Distribution of bond-lengths sampled from the underlying distribution \(r_i \exp(-\beta \nu(r_i)) \), for three different values of \(P_{zz} \); (b) distribution of bond angles sampled from \(\exp(-\beta \nu(\theta_{ijk})) \sin(\theta_{ijk}) \), for simulations at two different values of \(k_0 \). The underlying distributions are shown as dashed lines.

Fig. 8 Frictional pressure profiles: (a) \(P_{xz}(z) \) as a continuous function of the registry of the rigid walls, \(\alpha \); (b) \(P_{xz}(z) \) calculated through the IK definition, for \(0.0 < \alpha < 0.5 \), for the rigid system.

\(x \)-direction away from the region between the brushes. This is not the case for a rigid tilted system of polymers or when there is sufficient disorder associated with the bond-length and bond-angle fluctuations.
untitled brushes (with their director perpendicular to the surface) are shown as solid lines, while the results for the tilted brushes (with their director at an angle of 30° to the normal are shown as dashed lines). The yield point corresponds to the maximum in the domain of $\alpha \in [0,0.5]$. In the rigid and semi-rigid models for both tilted and non-tilted systems (Fig. 10(a)), the P_{xz} curves exhibit an approximately parabolic shape with a well defined maximum with $\alpha_{\text{yield}} \approx 0.3$. Although it is more difficult to make an accurate estimate of α_{yield} for the fully-flexible model with $\alpha_{\text{yield}} \approx 0.2$. A static friction point can also be identified, however, as expected, the peak is not so well pronounced as for the more the rigid systems. Furthermore, α_{yield} is lower for the fully-flexible model with $\alpha_{\text{yield}} \approx 0.2$. In the fully-flexible model, a static friction point can also be identified, however, as expected, the peak is not so well pronounced as for the more rigid systems. Furthermore, α_{yield} is lower for the fully-flexible model with $\alpha_{\text{yield}} \approx 0.2$. In the rigid model, the rotation of the chains from the surface normal creates a component of the force in the x-direction, even when the chains are perfectly aligned ($\alpha = 0$) in this case corresponds to geometry in which the tail groups in the upper and lower polymer layers have the same x-coordinate. The mismatch of the alignment increases this force. Recent studies of two crystalline surfaces lubricated by a monolayer of liquid crystal (LC) material show that the friction force is strongly dependent to the orientational ordering of lubricating phase. The mesogens exhibit a significant orientational order in the stick state, and become ordered as the system slips, the extent of disordering being related to the structure of the confining state.

The static friction point at different values of fixed applied load P_{zz}, can be fitted using Amontons’ law for adhering surfaces:32

$$P_{zz}^{\text{yield}} = \mu P_{zz} + P_0$$

where μ is the static friction coefficient (μ_s) in the case of CBMC simulations, and the kinetic friction coefficient (μ_k) when the DPD simulations are employed. The constant P_0 appearing in eqn (16) signifies that a finite frictional force arises even in the absence of applied load. This is due to an additional internal load that results from attractive forces between the brushes and between the brushes and the surface. The behaviour of P_{zz}^{yield} as a function of P_{zz} for the three different models in study by CBMC in the non-tilted regime, is plotted in Fig. 11.
The DPD simulation results are also plotted, and each point on this curve represents an independent simulation performed at fixed applied load and constant shear rate of $\gamma_s = 5 \times 10^{-4}$ in reduced units (note $v_s = L/\gamma_s^{1/2}$).

The slope of the curves from the MC simulations are our estimate of the static friction coefficient, and in the case of the DPD simulations of the fully-flexible system, it represents the kinetic friction coefficient at that particular sliding velocity. The average components of the pressure tensors, friction coefficients and respective standard deviations, μ_s, are presented in Table 1, as a function of the load. As expected, μ_s decreases significantly when going from the rigid to the fully-flexible system. This is related to the degree of order in the thin solvent film between the brushes. The more structured (rigid) the brushes the more ordered is the fluid between the surfaces and the higher is the resistance to shear. As observed for most lubricating systems μ_s is smaller than μ_k, reflecting the larger lateral force necessary to initiate the sliding. These results are presented in the form of a Stribeck plot in Fig. 12. Here, the friction coefficient is calculated through eqn (2) since we want to work at a particular normal pressure. We have assumed that the shear viscosity of the entrapped fluid or solvent is constant in constructing the plot. The static friction coefficient was obtained using CBMC at $P_{zz} = 23$. The other points are the result of the DPD simulations at different values of load and shear velocities (Table 1). The fundamental shape of the Stribeck curve (as sketched in Fig. 1) is visible in Fig. 12, if we ascribe the static friction coefficient as the limit of the boundary layer friction and take the results from the DPD simulations for the hydrodynamic lubrication regime. We note that the use of the friction coefficient from the slopes would result in a similar curve with lower values of μ_s. The values μ_k obtained at lower sliding velocities are comparable with the experimental estimates for this system of $(1.5 \pm 1) \times 10^{-2}$, as suggested by Chen et al.7 The ratio of μ_k/μ_s for the fully-flexible model changes from 0.11 to 0.5 over the range of shears rates studied. Experimentally this ratio is close to 0.5 for solid surfaces lubricated by oils2 and given the simplicity of our model, the model results are in reasonable agreement with experiment. The nature of the two simulations techniques

<table>
<thead>
<tr>
<th>P_{zz}</th>
<th>$\gamma_s \times 10^4$</th>
<th>$P_{xx} \times 10^3$</th>
<th>$(P_0 \pm \varepsilon) \times 10^3$</th>
<th>$(\mu_k \pm \varepsilon) \times 10^3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid</td>
<td>25</td>
<td>0.20</td>
<td>0.489</td>
<td>-7.336 ± 1.202</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>0.25</td>
<td>0.958</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>0.30</td>
<td>1.733</td>
<td></td>
</tr>
<tr>
<td>Semi-rigid</td>
<td>21</td>
<td>0.25</td>
<td>0.661</td>
<td>-3.205 ± 0.042</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>0.30</td>
<td>1.035</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.25</td>
<td>1.389</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>0.30</td>
<td>1.770</td>
<td></td>
</tr>
<tr>
<td>Fully-flexible – CBMC</td>
<td>22</td>
<td>0.30</td>
<td>0.027</td>
<td>-0.300 ± 0.044</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>0.10</td>
<td>0.037</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.20</td>
<td>0.079</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>0.35</td>
<td>0.097</td>
<td></td>
</tr>
<tr>
<td>Fully-flexible tilted – CBMC</td>
<td>22</td>
<td>0.30</td>
<td>0.231</td>
<td>-1.192 ± 0.001</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.30</td>
<td>0.425</td>
<td></td>
</tr>
<tr>
<td>Fully-flexible – DPD</td>
<td>23</td>
<td>10</td>
<td>12.9</td>
<td>-3.6 ± 0.24</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>17.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>21.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>5</td>
<td>5.97</td>
<td>-1.9 ± 0.46</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>8.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>10.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>2.5</td>
<td>3.98</td>
<td>-0.6 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>4.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>5.71</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
means that we are not able to reproduce any point in the mixed lubrication regime with these methods so it is not possible to claim that we have reproduced the Stribeck curve, although we have captured its limiting features.

5 Conclusions

A quasistatic approach, originally developed for molecularly thin Lennard-Jones fluids confined between parallel walls, has been successfully applied to a system of end-grafted polymer brushes immersed in solvent to calculate the static friction coefficient of the system. Simple models have been developed which are compatible with a polyzwitterionic brushes of poly[2-(methacryloyloxy)ethyl phosphorylcholine] (pMCP), in aqueous media, at physiological pressures (up to 7.5 MPa), where the friction coefficient has been measured using the surface forces apparatus. That is to say the models reproduce the correct brush width to polymer separation of the real system, along with a reasonable value of the normal pressure and they predict values of both the static and kinetic friction of the same magnitude as those observed in the experiment. Our purpose is not to try to model the atomistic detail of the layer but to create three general models that can be used to study the effect on the static friction as the layers becomes more structurally disordered.

In previous studies, we have shown that non-equilibrium DPD simulations can only predict the kinetic friction coefficients at relatively high sliding velocities and low normal loads and this method does not allow us to reach the boundary layer regime. In this work, we present a configurational bias Monte Carlo method for measuring the static friction by looking at the tangential component of the pressure induced by a mismatch in the registry of the two grafting surfaces.

We have successfully calculated the static friction coefficient for three model systems of grafted polymers which exhibit increasing intramolecular flexibility. These are: the totally rigid brushes (combs moving through a disordered solvent); a model involving additional bond-stretching which creates disorder in the direction normal to the polymer–polymer interface; and a model involving additional bond-angle and torsional distortions, which creates additional lateral disorder in the plane of the interface. The third of these is the most realistic representation of the experimental system under consideration. Our results show that slip occurs at much lower values of shear force the more flexible the polymer layer. A moderate increase in the flexibility of the chains reduces the friction coefficient by a factor of ca. 20. Most of this change is associated with bond-angle and torsional distortion in the fully-flexible model. In addition, we have studied the initial orientation of the brushes at zero shear on the static friction by simulating models where the director of the polymer brushes is tilted by an angle of 30° with respect to the walls. The tilting increases the value of F_{xy}^{field} and produces an increased friction coefficient where the top, tilted layer is displaced in the direction away from the tilt.

The behaviour of P_{xz} in function of the registry of the walls was calculated for all models, at different values of applied load and Amonton’s law, which is obeyed by these systems, was used to calculate the static friction coefficient.

Non-equilibrium dynamics techniques using the same model were performed using DPD and the limiting extremes of the Stribeck curve associated with the boundary lubrication regime and the hydrodynamic lubrication regime were observed. As expected, μ_{s} is significantly lower than μ_{k} for the same system. The dynamical friction coefficients in the model are in good agreement with those observed in the experiment and the ratio of μ_{s}/μ_{k} of between 0.11 and 0.5 is close to the values of 0.5 normally seen for these systems. It is interesting that this behaviour can be observed in simple models of perfectly flat surfaces with grafted polymers without the introduction of surface asperities. In future work, we plan to introduce surface asperities at different length scales to study the effect of surface inhomogeneity on static and kinetic friction and to study the effect of increasing the normal load at low sliding velocity to try to observe the mixed lubrication regime by non-equilibrium simulation.

Appendix

The wall is modelled as a continuum solid composed of DPD atoms at a uniform density ρ_{w}. The interaction potential between a particle i in the bulk (solvent or polymer) and a volume element, jw, is $V_{i,jw}(r)$; (the conservative DPD potential is defined in eqn (5)). As shown in Fig. 13, the plane containing the first layer of wall particles is at $Z = 0$ and i is at a distance z from this plane and jw and i are separated by r.

The potential energy between particle i and the wall is

$$V_{i,w}(z) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \int_{0}^{+\infty} dX dY dZ V_{i,jw}^{c}(r) \rho_{w}. \quad (17)$$

Changing from Cartesian to the cylindrical coordinates, and noting that the conservative part of the DPD potential for $r_{c} = 1$ is

$$V_{i,jw}^{c}(s, z + Z) = \frac{d_{w}}{2} \left(\sqrt{(z + Z)^{2} + s^{2} - 1} \right)^{2} r < 1$$

$$= 0 \quad z + Z > 1$$

$$= 0 \quad s^{2} \geq 1 - (z + Z)^{2} \quad (18)$$

![Fig. 13](image-url) Coordinate system for the wall-fluid particle potential.
we can integrate over ϕ to obtain

$$V_w(z) = \pi a_{nw} \rho_a \int_0^{1-z} dZ \sqrt{1-(z+Z)^2} \int_0^Z dx s (\sqrt{z+Z} + s^2 - r_c)^2$$

(19)

and finally

$$V_w(z) = \pi a_{nw} \rho_a \left[\frac{1}{30} z^6 + \frac{z^3}{6} - \frac{z^4}{6} + \frac{z^5}{20} \right]$$

(20)

where a_{nw} is the repulsive parameter between a wall and fluid particle. The force in eqn (6) is the negative of the derivative of eqn (20) with respect to z.

References